Packing-Based Approximation Algorithm for the k-Set Cover Problem

نویسندگان

  • Martin Fürer
  • Huiwen Yu
چکیده

We present a packing-based approximation algorithm for the k-Set Cover problem. We introduce a new local search-based k-set packing heuristic, and call it Restricted k-Set Packing. We analyze its tight approximation ratio via a complicated combinatorial argument. Equipped with the Restricted k-Set Packing algorithm, our k-Set Cover algorithm is composed of the k-Set Packing heuristic [7] for k ≥ 7, Restricted k-Set Packing for k = 6, 5, 4 and the semi-local (2, 1)improvement [2] for 3-Set Cover. We show that our algorithm obtains a tight approximation ratio of Hk − 0.6402 + Θ( 1 k ), where Hk is the k-th harmonic number. For small k, our results are 1.8667 for k = 6, 1.7333 for k = 5 and 1.5208 for k = 4. Our algorithm improves the currently best approximation ratio for the k-Set Cover problem of any k ≥ 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic QoS-aware Web Services Composition based on Set-Cover Problem

By definition, web-services composition works on developing merely optimum coordination among a number of available web-services to provide a new composed web-service intended to satisfy some users requirements for which a single web service is not (good) enough. In this article, the formulation of the automatic web-services composition is proposed as several set-cover problems and an approxima...

متن کامل

Approximation Algorithms for Geometric Covering Problems for Disks and Squares

Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue UnitSquare Cover. In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approxim...

متن کامل

A new metaheuristic genetic-based placement algorithm for 2D strip packing

Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...

متن کامل

Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems

We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representatives with different approximation ratios. The approximation ratio of the s...

متن کامل

On 2-Coverings and 2-Packings of Laminar Families

Let H be a laminar family of subsets of a groundset V A k cover of H is a multiset C of edges on V such that for every subset S in H C has at least k edges that have exactly one end in S A k packing of H is a multiset P of edges on V such that for every subset S in H P has at most k u S edges that have exactly one end in S Here u assigns an integer capacity to each subset in H Our main results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011